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Abstract

Finite element models of square objects in a contrasting matrix in simple shear show that the objects deform to a variety of shapes. For a

range of viscosity contrasts, we catalogue the changing shapes and orientations of objects in progressive simple shear. At moderate simple

shear (g ¼ 1.5), the shapes are virtually indistinguishable from those in equivalent pure shear models with the same bulk strain (RS ¼ 4),

examined in a previous study. In theory, differences would be expected, especially for very stiff objects or at very large strain. In all our

simple shear models, relatively competent square objects become asymmetric barrel shapes with concave shortened edges, similar to some

types of boudin. Incompetent objects develop shapes surprisingly similar to mica fish described in mylonites.

q 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

One of the fundamental questions for structural geol-

ogists to answer is whether the geometry of rock structures

can reveal the kinematics of the deformation. For example,

are the fabrics and structures that arise from simple shear of

rocks necessarily very different from those that arise in pure

shear? If the structures in question arise only from strain, in

theory there should be no difference, because the distortion

associated with simple shear can be considered as pure shear

plus rotation (see Hobbs et al., 1976, fig. 1.14). However, in

a mechanically active system, the vorticity of the defor-

mation is likely to affect the development of deformation

structures. For example, it is well known that rigid objects in

a linearly viscous matrix rotate differently in pure shear than

in simple shear (Ghosh and Ramberg, 1976).

This paper concerns the two-dimensional behaviour of

ductile square objects in a contrasting matrix, in simple

shear, forming a sequel to a recent study of square objects in

pure shear (Treagus and Lan, 2000). Most studies of

geological objects or inclusions have concerned elliptical

shapes, with studies of simple shear concentrating on rigid

objects in a viscous matrix. However, a number of

geological objects may be approximated to square-shaped

for the purpose of modelling their deformation: for example,

angular grains or clasts, prismatic porphyroclasts, and

initially rectilinear boudins. An important point of principle

is that non-elliptical objects deform to irregular shapes that

reflect rheological contrasts, whereas elliptical objects will

deform to other elliptical shapes (Treagus et al., 1996).

Several recent studies of rigid objects in a matrix in

simple shear have sought to explain the orientation of

porphyroclasts in natural shear zones (Arbaret et al., 2001;

Mancktelow et al., 2002; ten Grotenhuis et al., 2002;

Marques and Coelho, 2003). However, in this paper, we are

concerned with deformable objects in a matrix. It is well-

known that a linearly viscous elliptical object coherently

embedded in a contrasting linearly viscous matrix under-

goes a different strain from the bulk strain, which is

inversely proportional to the object/matrix viscosity ratio

(Eshelby, 1957; Gay, 1968a; Bilby et al., 1975; Shimamoto,

1975). However, applications of these theories to the

deformation of rocks (e.g. Gay, 1968b; Lisle et al., 1983;

Freeman, 1987; Treagus and Treagus, 2002) rely mainly on

the algebraic relationship of object to matrix strain

relationships derived for pure shear by Gay (1968a) or

Bilby et al. (1975). Bilby and Kolbuszewski (1977) have

demonstrated different behavioural effects for elliptical
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inclusions in simple shear, although their results for finite

strain are not easily comparable with those for pure shear.

In simple shear, whether elliptical objects strain

continuously, or rotate and oscillate within deformation

bounds, or undergo no strain or rotation (steady behaviour),

depends partly on initial ellipticity, but mainly on the

balance between the viscosity ratio and the vorticity of the

deformation (Bilby and Kolbuszewski, 1977). These

authors define three regimes of behaviour in simple shear:

in regime 1 (viscosity ratio, m , 2), all objects deform

progressively towards greater ellipticity; in regime 2

(2 , m , ,3.4), some objects progressively deform and

others oscillate; in regime 3(m . 3.4), all objects undergo

deformation within limits, in cycles of oscillating rotation,

deformation and shape change. These cycles have g

wavelength values of ,10, over which deformation the

elliptical objects deform and then undeform, while rotating.

Weijermars (1993) used the term ‘pulsating strains’ to

describe part of this phenomenon, but it is unclear why his

analysis and results are so different from those of Bilby and

Kolbuszewski (1977). In neither approach is it a simple

matter to compare the finite strain of an initially circular

inclusion in simple shear and in pure shear. A comparison

between results graphed for simple shear (Bilby and

Kolbuszewski, 1977, fig. 6) within one cycle of defor-

mation, and their equation for pure shear, for m values of

five and seven, suggests that a significantly greater bulk

strain is required, to achieve the same amount of distortion

of a competent object in simple shear, as in pure shear. This

also appears to be the case, when comparing finite element

models of elliptical objects in simple shear (M. Casey, pers.

comm., 1994) with theoretical values for pure shear.

However, according to the analyses of Bilby and Kolbus-

zewski (1977), the most important differences between

object deformations in simple shear and pure shear would be

seen for bulk deformations that exceed one cycle of

oscillation in simple shear. This would mean comparing

deformations with a bulk strain ratio of .100, an excessive

strain that is unlikely for pure shear of rocks and may only

occur locally in very high strain geological shear zones.

We examine some of these questions further, comparing

finite element models of square objects in pure shear and

simple shear, where the development of irregular shapes

might be expected to be different. In Treagus and Lan

(2000), we presented a series of finite element models of

square objects in three different orientations (termed

‘square’, ‘rhomb’, and ‘skew square’), in a matrix under-

going progressive pure shear (Fig. 1), where object and

matrix are both Newtonian and have boundary coherence.

The objects develop into irregular shapes (Fig. 2), especially

the objects ‘square’ to pure shearing. Objects stiffer than the

matrix become barrel-shaped, showing notable concavity of

the shortening edges. These are similar to barrel-shaped or

‘fish-head’ boudins, described by Ramsay (1967, p. 106)

and Ghosh (1993, p. 387). In contrast, incompetent objects

progressively lose their square outlines, and appear lobate

and notably rounded. However, square objects diagonal to

pure shearing (‘rhombs’) deform to approximately rhombic

shapes, remaining almost straight-sided. The ‘skew square

model’ develops asymmetric shapes between those of

‘square’ and ‘rhomb’ models (Fig. 2). These, and many

other aspects of shape changes and object deformation, have

already been analysed in full in Treagus and Lan (2000).

This paper forms a sequel to Treagus and Lan (2000), and

presents comparable finite element models of square objects

in a matrix in simple shear. Most of the modelling of object-

matrix systems in simple shear has concerned rigid objects

of different shapes (Fernandez et al., 1983; Arbaret et al.,

2001; Mancktelow et al., 2002; ten Grotenhuis et al., 2002),

rather than deformable objects. However, Ghosh and

Ramberg (1976, figs. 36–39) provide a few analogue

simple shear models of single or grouped deformable square

objects with different competence relative to the matrix.

Although the viscosity ratios are not quantified (and no

incompetent objects are modelled), the ductile competent

objects reveal the progressive development of barrelling,

similar to those we produced in pure shear numerical

models (Fig. 2).

Two questions can be asked of the simple shear models

that follow. (1) Do the object shape changes reveal the

deformation history and kinematics of the system? If so,

these models might be expected to show significant

Fig. 1. Design of finite element models of square objects in a matrix, in pure

shear, from Treagus and Lan (2000). (a) ‘Square’ and ‘rhomb’ models. (b)

‘Skew square’ model (edges initially inclined at tan21(0.5) ¼ 26.68 and

tan21(2) ¼ 63.48 to pure shear axes (X, Z). The lower figures show the

models with passive objects (no viscosity contrast with the matrix) after

50% shortening (X/Z strain ratio of R ¼ 4) with the X direction indicated.
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differences from those in pure shear (cf. Treagus et al.,

1996; Treagus and Lan, 2000). (2) Do these simple shear

models simulate or mimic any structures that develop in

natural shear zones, such as porphyroclast structures

commonly used as ‘shear criteria’ (Simpson and Schmid,

1983; Passchier and Simpson, 1986; Hanmer and Passchier,

1991)?

2. The finite element models

The finite element model we use in this study is a two-

dimensional finite element program, developed by Hanson

(1990) and modified by Lan and Hudleston (1991), which

treats the case of plane, steady-state flow of an ice sheet

deforming as an incompressible power-law fluid. A detailed

description of the equations and modification of the program

can be found in a series of papers (Lan and Hudleston, 1991,

1996, 1997; Hudleston and Lan, 1994).

Hanson (1990) tested the program by comparing the

results of finite element simulations with a number of

analytical solutions for glaciological problems, achieving

good correspondence (to within four digits). However, to

have confidence in a complex numerical model, one must

verify its performance. The modified program was tested in

several ways. This was first done by using it to solve simple

problems with known analytical solutions. Good results

were obtained (Lan and Hudleston, 1991). Secondly, the

numerical results were compared with results of earlier

finite element models of structures (folds, faults and

mullions) and with theoretical predictions. Again, the

correspondence was very good (Lan and Hudleston,

1991). Since then, the program has been used to produce

numerous finite element models in the field of structural

geology and tectonics, from folding and faulting to objects

in a matrix (e.g. Hudleston and Lan, 1993, 1994; Lan and

Hudleston, 1996, 1997; Treagus et al., 1996; Treagus and

Lan, 2000).

The models in this paper follow almost the same design

as the full square model of Treagus and Lan (2000),

introduced above (Fig. 1a): but here the deformation is

simple shear rather than pure shear (Fig. 3). The same two-

dimensional finite element program was used as in the

previous studies (Treagus et al., 1996; Treagus and Lan,

2000). In this paper we describe results of comparable

modelling in simple shear deformation.

The two-dimensional model (Figs. 3 and 4) comprises a

square inclusion (object) enclosed in a surrounding region

of matrix, where object and matrix are Newtonian viscous,

the object/matrix viscosity ratio is m, and there is perfect

coherence at the object-matrix boundary. The design of the

model is shown in Fig. 4, and is comparable with the

‘square’ model of Treagus and Lan (2000, fig. 2a). The

whole model is initially 3.4 units square, made up of 449

elements and 444 nodes; the square object is 0.8 units

square, comprising 64 small square elements, surrounded by

a region of small squares and linking triangular elements

that pass into larger squares in the outer region of the matrix.

The object occupies 1/18 the model area. The boundary

conditions are simple shear, with a fixed base, graduated

lateral velocities that maintain g ¼ 0.025 per time step, and

a constant left-lateral translation of the top (0.085 units per

time step). The model thus achieves a bulk simple shear, and

retains an overall parallelogram form, as shown in Fig. 3b

after 60 time steps (g ¼ 1.5). These boundary conditions are

equivalent to model 1 of Bons et al. (1997), and comparable

with a shear-box experiment. A series of models with

different viscosity contrasts were deformed to stages of

g ¼ 0.6 (24 time increments), g ¼ 1.15 (46 increments),

Fig. 3. Design of the finite element simple shear model for a square object in

a matrix. (a) Initial model. (b) Model deformed to a shear strain of

tanc ¼ g ¼ 1.5, which is an X/Z strain ratio of RS ¼ 4. The central square

object is passive, with no viscosity contrast with the matrix.

Fig. 2. Selected results of object shape changes (after Treagus and Lan,

2000), for the three types of model shown in Fig. 1. (a) Competent objects,

with viscosity ratio of object to matrix of m ¼ 5; (b) incompetent objects,

with m ¼ 0.1.
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g ¼ 1.5 (60 increments), and g ¼ 2.7 (106 increments).

Only two models (m ¼ 5, 0.1) produced viable solutions for

g ¼ 2.7. All the models and stages are compiled in Fig. 5.

Regarding the choice of (load) boundary conditions, the

velocity boundary condition is used in our model, according

to established theory of the finite element method

(Zienkiewicz and Taylor, 2000). A great advantage of the

velocity boundary is that the model will keep a realistic

shape on the loading boundaries, whereas a stress boundary

condition would distort the load boundaries to become

curved or zigzag. Numerous tests have shown that the stress

effect caused by the velocity boundary condition only

appears in elements along the velocity load boundary; the

stress distribution in all other elements away from the

boundary is the same as that used by the stress boundary.

The model configuration does not pretend to be

simulating a truly isolated inclusion in an infinite matrix,

but a square inclusion in a finite matrix, to simulate simple

shear in rocks containing clasts of a certain spacing.

Repetition (tiling) of this model would simulate object-

matrix systems with centre spacing ,4-times the object

dimension. This size of object, relative to spacing, is

considered realistic for rocks containing ‘spaced’ clasts of

various types.

The purpose of these models is to investigate the change

in shape of square objects of different viscosity in a matrix,

in progressive simple shear; and to compare the results with

those described for same-sized models in pure shear

(Treagus and Lan, 2000). Importantly, the model for simple

shear of g ¼ 1.5 achieves an identical bulk strain (X/Z strain

ratio of RS ¼ 4) to the pure shear ‘skew square’ model with

RS ¼ 4, introduced earlier (Fig. 1b). This can be confirmed

numerically and by comparing the deformed shape of a

passive square object, relative to the principal strain

directions, seen to be mirrored in Figs. 1b and 3b. We will

compare the deformed shapes for models with viscosity

contrasts in the next section.

3. Analysis of model results

3.1. Object shapes

Fig. 5 reveals the object shape-change from initially

square, for all our simple shear models, with different

viscosity ratios and different stages of bulk simple shear.

The change of shape for a passive square object (no

viscosity contrast) is shown progressively in Fig. 5a (cf. Fig.

3b), on which we superimpose the direction of maximum

extensional strain (X). This object changes progressively to

a parallelogram, in the same manner of the bulk sinistral

simple shear. At the highest strain (g ¼ 2.7), the original

vertical edge is almost parallel to X. Models with different

viscosity contrasts (m) are shown in Fig. 5b, in columns of

equivalent stages of shear strain (g).

For the model with m ¼ 100, numerical solutions were

only found for g stages up to 1.2. The object records

rotation, but no significant distortion. Whether this beha-

viour is equivalent to the theoretical behaviour of a properly

rigid square inclusion will be addressed later. A higher bulk

Fig. 4. Initial configuration of elements in the finite element model. The

central object with a different viscosity is shown by bold outline.

Fig. 5. Shape changes of square objects in a matrix in progressive sinistral

simple shear with shear strains of g ¼ 0.6, 1.2, 1.5 and 2.7 (columns). (a)

Passive objects deform to parallelograms, indicating the bulk simple shear.

Dotted lines show orientation of the extension direction (X). (b) Series of

models with viscosity contrast (m) labelled. Horizontal lines show g values

not examined; crosses indicate models where viable solutions were not

obtained. See text for descriptions of shapes.
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shear strain (g ¼ 1.5) was reached for m ¼ 50, and this

model shows slight object distortion into a barrel-shape,

plus rotation. Heterogeneous strain is more obviously

revealed in the m ¼ 10 models, producing asymmetric

barrel shapes (Fig. 5). The significant effect is progressive

concavity of the shortening edge, and convexity of the

lengthening edge, as described for pure shear models

(Treagus and Lan, 2000). This is even more obvious for

the m ¼ 5 series, and their progressive shape changes are

shown in more detail in Fig. 6. These asymmetric barrel

shapes are similar to those of ‘skew squares’ in pure shear

(Fig. 2a). Similar shapes are illustrated by Ghosh and

Ramberg (1976) in analogue simple shear models with

single or multiple deformable competent objects. In all the

numerical models with m . 1, the competent objects show a

smaller object strain than passive objects, they develop

concavity of the shortened edges, and the positions of their

original square corners remain obvious.

We use a model series with m ¼ 0.1 to illustrate the

different effects for incompetent square objects (Fig. 5b),

shown in more precise detail in Fig. 7. Now, the object

deforms more than a passive object, and becomes

progressively smoother and curvaceous, due to convexing

of the shortening edge. Via an early ‘lemon’ shape, the

original square corners become progressively less clear,

until the most deformed objects appear like swimming ‘fish’

in the direction of simple shear (Fig. 7). Again, the shapes

are very similar to those described earlier from pure shear

models (Fig. 2b). The previous results for pure shear

revealed very similar shapes for incompetent objects in the

range of 0.5 . m . 0. This is confirmed by the simple shear

models, and shown by virtually identical object shapes

arising for m ¼ 0.1 and 0.001 at g ¼ 1.5 (Fig. 5).

Accordingly, we have not illustrated any other incompetent

models. What is most distinct about these shapes is the

progressive opening out and eventual disappearance of two

of the original square corners (Fig. 7).

3.2. Object strain, and comparisons with pure shear models

An important general principle for the simple shear

models, is that these material objects occupy progressively

different orientations with respect to the non-material bulk

principal strain axes, during deformation. The square object

modelled has two sides parallel to the direction of simple

shear (Fig. 3a), and so the diagonals are initially parallel to

the incremental X and Z strain directions. Thus its earliest

deformation is comparable with the pure shear ‘rhomb’

models (Figs. 1 and 2) (Treagus and Lan, 2000). However,

the vorticity of the simple shear deformation potentially

takes the deforming square into progressively smaller

angles to the finite X direction, over time, changing its

symmetry with respect to incremental strain.

At g ¼ 1.5 (RS ¼ 4), the simple shear model (Fig. 3) has

been shown earlier to be ‘equivalent’ to the deformation of

pure shear ‘skew square’ model with RS ¼ 4, plus rotation

(Fig. 2b). This is shown by the shape similarities of the

g ¼ 1.5 column in Fig. 5, with the pure shear models

reproduced in Fig. 8. However, the simple and pure shear

models differ slightly in the numbers of nodes that outline

their objects (with a greater number of points in the simple

shear models producing subtler shape irregularities), and in

the object size relative to the whole model (cf. Figs. 1 and 3),

with the ‘skew square’ pure shear model object having

Fig. 6. Detail of the m ¼ 5 competent model series. (a) The undeformed

square object with the finite element nodes indicated (circles) and two

diameters shown. Progressive shape changes are shown for sinistral simple

shear with (b) g ¼ 0.6, (c) g ¼ 1.2, (d) g ¼ 1.5 and (e) g ¼ 2.7. Note the

asymmetric barrel shapes, characterised by two concave shortened edges

and two slightly convex lengthened edges.

Fig. 7. Detail of the m ¼ 0.1 incompetent model series. (a) The undeformed

square object with the finite element nodes indicated (circles) and two

diameters shown. Progressive shape changes are shown for sinistral simple

shear with (b) g ¼ 0.6, (c) g ¼ 1.2, (d) g ¼ 1.5 and (e) g ¼ 2.7. Note the

progression of asymmetric lemon to fish to ribbon shapes, eventually

characterised by two extremely shortened convex leading edges, two

almost straight lengthened edges, and blurring of the corners.
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object/model dimension of 1: 4.8, compared with 1:4.25 for

these simple shear models. Comparisons of earlier pure shear

models with different object sizes has revealed increasing

strain in competent objects with decreasing object:model

size, and decreasing strain for incompetent objects. However,

comparison of the quarter models (dimension ratio 1:6) and

full square models (1:4) in Treagus and Lan (2000), for equal

bulk strain of RS ¼ 4, shows differences in object strain ratio

(R) of only ^0.1 to 0.2. On this basis, the size-related

differences between the pure shear and simple shear models

(Figs. 5 and 8) would be expected to be even smaller,

probably within ^0.1 in object R value.

We scaled and enlarged comparable pure shear and

simple shear models for precise comparison, and analysed

the object shapes using NIH Image (the US National

Institute of Health Mac-based image analysis software:

http://rsb.info.nih.gov/nih-image/). This method determines

an object strain for each model, using the analysis function

of NIH Image to a best-fit ellipse. The results are shown in

Fig. 9 as strain ratios and orientations, relative to the bulk

strain of RS ¼ 4. As expected from the size differences

discussed above, the simple shear models undergo a slightly

greater competent object strain for m ¼ 50, 10 and 5, by

þ0.1 to 0.2 in R, compared with the pure shear models.

Conversely, there is a smaller incompetent object strain

(20.13) for m ¼ 0.1. Without further modelling, we cannot

be certain of the reason(s) for the differences between these

simple shear and pure shear models: whether due to the

subtle size and shape differences, or the degree of coaxiality

of the deformation, or expected slight differences in NIH

Image analysis by ellipse approximations of the irregular

outlines. However, if the differences are due to the degree of

coaxiality of the deformation, this must be a very small

effect for this amount of finite deformation.

The orientations of best-fit object ellipse long axes for the

simple shear models fall within 21 to 38 clockwise of the

bulk stretch, X (Fig. 9). The differences in strain orientation

between simple shear and pure shear are small, falling

within ,28, and are not consistent in sense for the

competent set. These also probably reveal differences in

NIH Image analysis and ellipse fitting of the different

irregular object shapes. In conclusion, therefore, we do not

find significant differences between the object shapes and

strains in simple shear and pure shear, sufficient to indicate

the type of bulk deformation.

A more detailed analysis of object strain is given in Fig.

10, for the progressive simple shear models shown in detail

in Figs. 6 and 7 (m ¼ 5 and 0.1, respectively). The strain

analysis is made using NIH Image, as described above, to

determine an RS value for the best-fit strain ellipse for each

object, with u denoting the orientation of ellipse long axes to

the shear direction. As expected, a generally greater strain is

revealed for the incompetent objects, compared with the

bulk strain, for each model stage. Conversely, there is a

smaller strain for the competent objects. The positions of the

curves, relative to the asterisks that show the bulk simple

shear, reveal that the incompetent strain cannot be

considered simply as a greater amount of simple shear,

nor the competent strain a weaker simple shear. The

differences in R values for the different viscosity contrasts

are much more significant than the differences in the

principal axial axial orientation, u.

3.3. Object rotations

For the objects in simple shear, examined in the

preceding section, it is not a trivial matter to separate

rotations related to object strain from ‘rigid’ rotation. If the

stiff square inclusions had behaved as truly rigid objects,

and rotated in two dimensions in the manner of circular

objects in an infinite matrix in simple shear (Jeffery, 1922;

Ghosh and Ramberg, 1976), their incremental rotation

would be constant, and the finite angle of rotations (v)

would be given by:

v ¼ g=2 ðin radiansÞ ð1Þ

Fig. 8. Object shapes developed in pure shear for the ‘skew square’ model

(Fig. 1b) for viscosity contrasts of 50–0.1 (labelled), and bulk strain of

RS ¼ 4, after Treagus and Lan (2000). These can be compared (if mirrored)

with models in simple shear at equivalent bulk strain, shown in the g ¼ 1.5

column of Fig. 5.

Fig. 9. Comparison of computed object strain for simple shear and pure

shear models, using NIH Image analysis of best-fit ellipses to the irregular

object shapes. RS is the model (bulk) strain ratio (X/Z), and R the object

strain axial ratios, with SS R indicating the simple shear models, and PS R

the pure shear models. Angles are measured to bulk X, positive angles

measured clockwise. Tie-lines link ‘equivalent’ simple and pure shear

models for the same viscosity contrast (numbered).
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http://rsb.info.nih.gov/nih-image/


(Ghosh, 1993, p. 211). Fig. 11 shows the theoretical rotation

of rigid square objects according to Eq. (1), using a diagonal

as a marker. Eq. (1) is also shown as the linear relationship

of v to g in Fig. 12.

We are unaware of any theoretical proof that square

objects follow the same rotations as circles, but several

analogue studies have used square, rectangular or elongate

monoclinic (rhomboid) rigid objects to test the analytical

expressions for the rotation of rigid elliptical objects in

simple shear (Fernandez et al., 1983; Arbaret et al., 2001;

Mancktelow et al., 2002; ten Grotenhuis et al., 2002), and

have found good data fits to ellipses.

Returning to the comparisons between models of simple

and pure shear discussed earlier, we find in Eq. (1) that for a

simple shear of g ¼ 1.5, v ¼ 438, and so the square

diagonal (Fig. 11) is 28 clockwise of the shear direction,

24.68 counterclockwise of the X direction. In pure shear, the

equivalent ‘skew square’ model does not rotate, and (when

mirrored, for comparison) its diagonal is 18.48 counter-

clockwise of X. Thus, according to theory for isolated

objects, there would be about 68 more rotation for rigid

circles and squares (in an infinite matrix), in simple shear

than in pure shear with equivalent bulk strain (RS ¼ 4).

The same object diagonal (cf. Fig. 11) can now be used to

measure rotations in the simple shear models (Figs. 4–6), to

compare these results with rigid objects and with a passive

diagonal marker. Results for different m values (Fig. 12)

reveal positions progressively closer to the passive marker,

with reducing viscosity contrast. The stiffest modelled

objects (m ¼ 100) do not rotate as much as ideal theoretical

rigid objects, despite showing negligible strain. This is

probably a result of the finite size of the model compared

with infinite matrix theory. We have not varied the object

size relative to matrix in the finite element simple shear

models, to examine the size effect on ‘rigid’ rotation.

However, Marques and Coelho (2001) examined the

rotational behaviour of rigid elliptical objects, in shear

zones of varying widths relative to the object size. For a

shear zone whose width relative to object short axis (termed

S) is given by S ¼ 3.5, an object with axial ratio of 1.5

rotates consistently less than the theoretical angle of Ghosh

and Ramberg (1976) (see Marques and Coelho, 2001, fig. 4).

The analogue experiments used by Ghosh and Ramberg

(1976, fig. 5) to confirm their theoretical rotations had S

values of about six, so this value might be taken to

approximate an isolated object in a semi-infinite matrix.

Marques and Coelho do not have experimental results for

S . 3.5 with circular objects, so there are no direct

analogies with our numerical models (equivalent

S ¼ 4.25), but their trends would suggest a rigid rotation

for our stiffest squares (m ¼ 100) that is less than the

theoretical angles for rigid circular objects (Eq. (1)), as is

found in Fig. 12a.

At g ¼ 1.5, our m ¼ 50 object rotates 308, compared

with 438 rotation for a theoretical rigid object (Fig. 12a).

Some of this under-rotation may relate to object:model size,

as for m ¼ 100. However, some under-rotation is probably

due to the slight object deformation in this model (Fig. 5),

which prevents it from behaving as effectively rigid. In the

range from m ¼ 10 to 0.1, the differences in v are only a few

degrees (Fig. 12), and may partly reflect ^18 accuracy of

Fig. 10. Strain analysis of the models shown in Fig. 6 (m ¼ 5) and Fig. 7 (m ¼ 0.1), using NIH Image analysis of best-fit ellipses to the irregular object shapes. R

indicates object strain ellipse axial ratios, and u the orientation of ellipse long axis to the shear direction. Asterisks indicate the model (bulk) strain ratio (RS),

and dotted tie-lines join values for successive amounts of bulk simple shear (g values numbered).

Fig. 11. Theoretical rotation of a rigid square object (a), in sinistral simple

shear with increasing g (b), according to Eq. (1) and g values shown.
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model measurements. Nevertheless, the difference between

the m ¼ 5 and 0.1 models at g ¼ 2.7 are significant, and not

what might be expected. Here, the stiffer object diagonal has

rotated less than the equivalent passive marker, and the

incompetent object rotated more. This feature appears to

relate to differences in object strain shown in Fig. 10, rather

than reflecting the vorticity of the deformation, and is also

indicated by the larger angle of best-fit ellipse long axes to

the shear zone for the m ¼ 5 object, and smaller angle for

the m ¼ 0.1 (incompetent) object.

Up to moderate shear strain (g ¼ 1.5), and within one

order of magnitude of viscosity contrast with the matrix

(m ¼ 10 to 0.1), the average behaviour of the objects is a

rotation of the lengthening diagonal that is very close to

passive behaviour, even when the strain is markedly

different. As noted earlier, these deformable objects also

appear to take up orientations with respect to the principal

strain axes that are almost indistinguishable from pure shear

models, and so do not provide obvious clues to the vorticity

of the simple shear deformation.

4. Discussion and geological implications

The simple shear models presented in this paper only

reveal the behaviour of one orientation of a square object

with varying viscosity contrast to the matrix. All the

objects were initially aligned with the shear direction.

Squares oriented with their sides at other angles will

deform into different shapes from those shown in Figs.

5–7, occupying a full range from barrel shapes to

rhomboids (competent) or bone shapes to rhomboid

(incompetent), as shown in detail for pure shear (Treagus

and Lan, 2000) (e.g. Fig. 2). This previous work, and the

comparison we have made between pure shear and

simple shear models, now allow us to make some

extrapolations to square objects with other orientations to

the shear direction, such as diagonal squares.

A comparison of the deformation of squares and diagonal

squares in simple shear is shown schematically in Fig. 13.

We choose a shear strain of g ¼ 1.5 for illustration, and

choose m ¼ 5 for competent and m ¼ 0.1 for incompetent

objects. The behaviour of passive objects is shown in Fig.

13b; as deformation is, by definition, homogeneous, the

strain trajectories (X; dashed lines) are straight. The

competent objects (Fig. 13c) are both asymmetric barrels.

The left ‘square’ is after Fig. 6d; the right ‘diagonal square’

uses the coordinates of side midpoints from Fig. 6d to define

the object corners, and the shapes are extrapolated from

other models, following principles of concaving of shor-

tened edges and convexing of elongating edges described

earlier. A similar shape is produced by Ghosh and Ramberg

(1976, fig. 38) in analogue models of deformable square

objects diagonal to shearing. The bulk X direction is

indicated, away from the objects, but the strain trajectories

would be expected to wrap around the objects, reflecting the

Fig. 12. Angular rotation, v, for the leading diagonal of a square object (see Fig. 11a) in progressive simple shear of g ¼ 1 to 2.7. The broken line shows the

rotation of a passive 458 marker, for reference. (a) Competent objects: solid line is the theoretical relationship for rigid equant objects (Eq. (1)); symbols

indicate finite element models from Fig. 5, with viscosity ratios (m) as shown. (b) Incompetent m ¼ 0.1 objects.
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heterogeneous strain in matrix surrounding competent

objects (Ghosh and Sengupta, 1973).

Object shapes of the kind shown in Fig. 13c are

commonly associated with the process of boudinage

(Ramberg, 1955), particularly where the boudin is ductile

and undergoes deformation after fracture separation (Ram-

say, 1967, p. 106; Ghosh, 1993, p. 387). However, we show

here and elsewhere (Treagus et al., 1996; Treagus and Lan,

2000) that a series or train of angular objects is not required,

to reveal these barrel to fish-mouth shapes. The shape

features arise in single competent objects, as also demon-

strated in finite element models of rectangular objects with

elastic-plastic rheology by Lloyd and Ferguson (1981), and

with viscous rheology by Ramsay and Lisle (2000, fig.

39.19). These authors make direct comparisons with

geological boudins.

Barrel or fish-mouth shaped geological clasts with

concave shortened edges appear to be rather rare in

deformed conglomerates and breccias. During work in

progress (with J.E. Treagus), these shapes have been found

in occasional clasts in the Brioverian Cesson Conglomerate

in Brittany (Treagus and Treagus, 2002), in the Ordovician

Letterbrock Conglomerate in Co. Clare, Ireland, and in the

Ordovician Porth Wen Conglomerate of N. Anglesey,

Wales. However, caution is needed before irregular clasts

of this kind can be used as natural illustrations of the barrel

shapes modelled in this paper, since it cannot be assumed

that the clasts were originally perfectly square, nor that the

deformation was simple shear. Several clasts with consistent

geometry of concaving and convexing of shortened and

lengthened edges, respectively, are needed, before the

objects could be reliably used to provide information on

the viscosity contrast of the rock, for example according to

the concavity factor quantified in Treagus and Lan (2000).

Intriguing examples of barrel-shaped geological objects

can be seen in feldspar porphyroblasts in a schist described

by Johnson and Williams (1998, fig. 3). Their emphasis was

in the phenomenon of ‘oppositely concave microfolds’, seen

when tracing an early schistosity from the schist matrix into

inclusion trails near the short edges of feldspar porphyro-

blasts, and a product of the competence contrast. However,

in detail, the porphyroblast outlines reveal barrel shapes and

concave shortened edges characteristic of objects 5 or 10

times more viscous than the matrix.

There is a temptation to draw analogies between the

asymmetric shapes shown in Fig. 13, and shear criteria

(Simpson and Schmid, 1983; Passchier and Simpson, 1986;

Hanmer and Passchier, 1991), but we cannot claim that the

shapes of competent objects, alone, provide evidence of

regional shearing. The characteristic features of porphyr-

oclasts that these authors describe (e.g. d or s types), are not

necessarily associated with objects assumed to be initially

square, as in our models; nor can it be assumed that these

clasts have a sharp viscosity contrast with the surrounding

matrix, as in our models. Instead, porphyroclasts of these

types, even if originally rectilinear in shape, may be

associated with changes in rheology mantling the clasts,

as simulated in analogue models by Passchier and Sokoutis

(1993). If the competent objects shown in Fig. 13c involved

strain or strain-rate softening in the corner regions of

greatest deformation, their shapes over a sustained simple

shear would become more exaggerated, more similar to the

elastic-plastic models of Lloyd and Ferguson (1981), and

might then resemble d or s clasts that have been used as

shear criteria in natural shear zones. The limit in the amount

of shear strain that could be attained in our finite element

models also restricts the analogies with natural shear zones

that may have undergone very large g.

In Fig. 13d, similar principles are used to construct the

shapes of deformed incompetent objects as ‘squares’ and

‘diagonal squares’. Both orientations produce shapes that

might be called fish: the final alignment of the two

orientations is not very different, with the long axis at an

acute angle to X, but the geometry is reversed. Ghosh and

Ramberg (1976) did not model incompetent objects of this

kind, and we are unaware of any other models that have

produced these shapes in incompetent objects in simple

shear. Qualitatively, these fish shapes are remarkably

similar to some of the varieties of mineral fish (usually

Fig. 13. Modelled and extrapolated shapes of square and diagonal-square

objects (a) in a sinistral shear zone with g ¼ 1.5. (b) Passive objects deform

homogeneously into parallelograms, and a fabric related to the X direction

of finite strain (dashed lines) would be uniform. (c) Competent objects

(viscosity ratio of 5) both develop skew barrel shapes and concave ends. In

detail, the fabric in the matrix would be deflected around the objects. (d)

Incompetent objects (viscosity ratio of 0.1) develop fish shapes with

different asymmetry, but only a small difference in long-axis orientation,

acute to the shear direction and at a small angle to the bulk X direction.
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mica) described in mylonites (e.g. Lister and Snoke, 1984,

figs 3–7; Passchier and Trouw, 1996, fig. 5.27; ten

Grotenhuis, 2000). These authors illustrate mica fish with

geometry of both types shown in Fig. 13d (also Fig. 7),

oriented at acute angles to the shear direction. Whether it

might be argued that mica fish develop their characteristic

shapes when behaving as initially incompetent objects in

shear zones, and after a certain stage behave as quasi-rigid

objects, and what this might signify for the rheology of

shear zones over time, is left open to further investigation.

The modelling and geological discussion above concern

objects that are in perfect continuity and coherence with

their matrix. Several recent studies have compared the

effects of a slipping with a non-slipping interface on the

rotation of rigid objects in simple shear (e.g. Ildefonse and

Mancktelow, 1993; Marques and Coelho, 2001; Manckte-

low et al., 2002), and conclude that the stable orientations of

porphyroclasts in shear zones are suggestive of a slipping

interface. It is not possible to speculate what the effects and

geological implications would be, if the simple shear

models in this paper had assumed perfect interfacial slip

rather than coherence. However, we consider a coherent

object-matrix boundary to be an appropriate model for

deformation of many types of rocks, and it still remains for

further work to prove when and whether there is uncoupling

and interfacial slip around clasts in geological shear zones.

5. Conclusions

Finite element models show that square objects with a

viscosity contrast to their matrix deform into a variety of

shapes, regardless of whether the deformation is by pure

shear or simple shear. Square or more generally angular

geological objects (e.g. clasts, porphyroblasts, boudins)

might likewise be expected to deform to shapes that are

indicative of the viscosity contrast.

We asked two specific question about the simple shear

models, at the beginning of this paper. (1) Do the object

shape changes reveal the deformation history and kin-

ematics of the system? (2) Do these simple shear models

simulate any structures that develop in natural shear zones,

such as porphyroclast structures commonly used as ‘shear

criteria’?

Our answer to the first is that we did not find any

characteristic geometries in simple shear that did not also

arise for pure shear of square objects in a matrix. However,

our direct comparisons between pure and simple shear have

been restricted to g ¼ 1.5. The special characteristics of

simple shear in terms of cycles of oscillating strain and

rotation, given by the theory of Bilby and Kolbuszewski

(1977), require significantly greater shear strains; for

example, one cycle of ‘bounded deformation’ for m ¼ 7

requires g ø 10. We therefore conclude that the structural

and mechanical differences between simple shear and pure

shear will only be properly revealed at high finite strain

(RS @ 4). Other structural associations, such as strain

heterogeneity and localised high-strain shear zones, will

provide better clues to simple shear than will strained

objects alone.

In answer to the second question, and following on from

arguments above, we consider that the geometry of

deformed square objects alone will not be sufficient to

deduce a shear zone and sense of shear. However, in an

identified shear zone that possesses a consistent asymmetry

of porphyroclasts of various kinds, shapes such as those

shown in Fig. 13 would be a good indicator of sinistral

shear. Potentially the most interesting outcome of the

modelling in this paper is the development of shapes in

incompetent objects that are similar to mica fish described in

mylonite zones. Whether this is accidental or significant of

their mechanism will be pursued in other work.

We conclude that there may be non-uniqueness to many

features of natural deformation arising from pure shear and

simple shear, up to moderate strain. For square objects in a

matrix, the object shape change principally depends on its

rheological contrast with the matrix. Properties such as non-

Newtonian flow laws, material anisotropy and a slipping

object-matrix boundary, will also influence the deformation

of objects in a matrix, and are topics for further work.
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